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Abstract

The rate of deformation gradient is partitioned additively into its elastic and plastic parts within the framework of
phenomenological plasticity based on the multiplicative decomposition of deformation gradient. The corresponding
partition of the nonsymmetric nominal stress is also given. The results are compared with the well-known results of
partitioning the rates of Lagrangian strain and its conjugate symmetric Piola—Kirchhoff stress. Extension to the
framework of monocrystalline plasticity is then discussed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The purpose of this paper is to elaborate on the partition of the rate of deformation gradient and the rate
of nonsymmetric nominal stress into their elastic and plastic parts within the framework of phenomeno-
logical plasticity based on the multiplicative decomposition of deformation gradient. Such partitions have
been previously considered by Hill (1984) and Havner (1992) in the context of micro-to-macro transition
and crystalline plasticity, and were found to be particularly useful in the theoretical analysis of inelastic
material response.

Consider an elastoplastically deformed configuration of the material sample %4, whose initial unde-
formed configuration was %°. Let F be the deformation gradient that maps an infinitesimal material ele-
ment dX from %° to dx in 4, such that dx = F - dX. Introduce the intermediate configuration %" by elastic
destressing to zero stress of the configuration #. The intermediate configuration differs from the initial
configuration by residual (plastic) deformation, and from the elastoplastically deformed configuration by
reversible (elastic) deformation. If dxP is the material element in %° corresponding to dx in 4, then
dx = F° - dxP, where F° represents the deformation gradient associated with elastic loading from %° to 4. If
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F? is the deformation gradient of the transformation #° — %”, such that dx” = F? - dX, the multiplicative
decomposition of the total deformation gradient into its elastic and plastic parts follows (Lee, 1969)

F=FF. (1)

For inhomogeneous deformations only F is a true deformation gradient, whose components are the
partial derivatives 0x/0X. The mappings #° — % and #° — %P are not, in general, continuous one-to-one
mappings, so that F° and FP are not defined as the gradients of the respective mappings (which may not
exist), but as the point functions (local deformation gradients). In the case when elastic destressing to zero
stress is not physically achievable due to possible onset of reverse plastic deformation before the state of
zero stress is reached, the intermediate configuration can be conceptually introduced by virtual destressing
to zero stress, locking all inelastic structural changes that would take place during the actual destressing.

The deformation gradients F¢ and F? are not uniquely defined, because the intermediate configuration is
not unique. Arbitrary local material rotation Q can be superposed to the intermediate configuration,
preserving it unstressed. Thus, we can write

F=F F =F.F, (2)
where
F=F.-Q", FF=0Q F. (3)

In applications the decomposition (1) can be made unique by additional requirements dictated by the
nature of the considered material model. For example, for elastically isotropic materials the stress response
from %P to % depends only on the elastic stretch V¢, and not on the rotation R® from the decomposition
F° = V°. R®. Consequently, the intermediate configuration can be specified uniquely by requiring that
elastic unloading takes place without rotation, F® = V°¢ (Lee, 1969; Lubarda and Lee, 1981). On the other
hand, in single crystal plasticity, the orientation of the intermediate configuration is specified by fixed
orientation of the crystalline lattice, through which the material flows by crystallographic slip during the
transformation from #° to %°. In Mandel’s (1973) model, if the triad of orthogonal (director) vectors is
attached to initial configuration, and if this triad remains unaltered by plastic deformation, the intermediate
configuration is referred to as isoclinic. Such configuration is unique at any given stage of elastoplastic
deformation, because a superposed rotation Q # I would change orientation of the director vectors, and
the configuration would not remain isoclinic. Further discussion of nonuniqueness of the decomposition
can be found in the articles by Naghdi (1990) and Lubarda (1991). For computational aspects of finite
deformation elastoplasticity based on the multiplicative decomposition, see the recent book by Simo and
Hughes (1998).

If Lagrangian strains corresponding to deformation gradients F* and FP are defined by

Ef=3(C -1, E=3C -0, (4)
where C° = FT . F* and C? = F*' . F?, the total Lagrangian strain can be expressed as

E=4C-1)=E°+F" - E F" (5)

The elastic and plastic strains E° and EP do not sum to give the total strain E, because E and EP are
defined relative to the initial configuration %° as the reference, while E° is defined relative to the inter-
mediate configuration %° as the reference. Consequently, it is the strain FPT . E° - F?, induced from the
elastic strain E° by plastic deformation FP, that sums up with the plastic strain EP to give the total strain E.

The following expressions hold for the rates of Lagrangian strains E° and EP:

EE=FT.E-F' —[C (F*-F" V)], (6)
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EP =F". (F°.F') . FP. (7)

These are conveniently expressed in terms of the strain rate E and the velocity gradient FP . FP~!. In
general, E° + EP # E.

2. Partitioning of the rate of Lagrangian strain
It is assumed that the material is elastically isotropic in its initial undeformed state, and that plastic

deformation does not affect its elastic properties. The elastic strain energy per unit unstressed volume ¥° is
then an isotropic function of the Lagrangian strain E°, which can be expressed as (Lubarda, 1994)

P =P(E°) =¥ [FP T (E-E")-F']. (8)

From this we derive the symmetric Piola—Kirhhoff stress tensors,
. oY oy°

= " ®)
which are related by

T =F-T F" (10)
The fourth-order elastic moduli tensors #° and & are introduced by

o?ype o?ye
L= L=—. 11
OE° ® OE°’ OE ® OE (11)

Their rectangular components are related according to

L =F, F L F (12)

Both tensors possess the full symmetry. The tensor #° appears in the linear relationship between the
rates T and E°, i.e.,

T =2k, TIt=2F, (13)
which follows by differentiating the first expression in Eq. (9). A differentiation of Eq. (10) gives

T=F.(T+2Z° - T+T. -Z"7) . FT, (14)
where the second-order tensor ZP is defined by

Z° = F*' . (FP.FP) . PP, (15)
Since, from Eq. (6),

E=FT.(E-F".[C-(F"-F )] -FP} - F*', (16)
the substitution of Egs. (14) and (16) into Eq. (13) yields

T=2:{E-F".[C°-(F°-F" )] -F*} — (Z° - T+T-2°). (17)

The elastic part of the rate of Lagrangian strain is defined by Hill and Rice (1973) as
(B =271 T. (18)

This is associated with a reversible strain increment in an infinitesimal loading/unloading stress cycle
corresponding to T. The remaining part of the strain rate in the additive partition
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E=(E) +(E), (19)
is the plastic part (E)°, which gives rise to a residual strain increment left upon the considered infinitesimal
loading/unloading stress cycle. If material obeys the Ilyushin’s postulate, Hill and Rice have shown that
(E)P so defined is codirectional with the outward normal to a locally smooth yield surface in the stress T
space.

Note that it is the tensor .2~ and not 2°~! that appears in the definition of elastic part of the strain rate
(18). This should be compared with Eq. (13), which indicates that 2" and T° appear in the definition of
E° ie.,

E =2 T°. (20)

_In general, the two rates are different, ie., (E)° # E°. Likewise, (E)” = E — (E)° # EP. While (E)° and
(E)” sum up to give E, in general E° + EP # E.

The relationships between the constituents of the multiplicative decomposition (1) and the additive

decomposition (19) follow from Eq. (17). The plastic part of the rate of Lagrangian strain can be written as

EP =FT.[Cc-(F°-F ), - FP+ 27" (2P - T+ T-Z°). (21)
The elastic part (E)° is related to E° by

(E)e —FT.E°.FP — 1. (Z° - T+T- ZPT)’ (22)
where

EC=FT. (F°.F) . F. (23)

Dually to previous formulation, the elastic part of the rate of symmetric Piola—Kirchhoff stress is defined
by

(T)*=<%:E. (24)
The remaining part,
(T’ =T-<:E, (25)

is the plastic part of the stress rate, which is codirectional with the inward normal to a locally smooth yield
surface in the strain E space. The relationships between plastic parts of the stress and strain rates are (Hill,
1978)

(TP =-2: ()", (B =-2": (D) (26)

3. Partitioning of the rate of deformation gradient

The previous analysis can be extended to partition the rate of deformation gradient into its elastic and
plastic parts, such that
F=(F)+ (F) (27)
To that goal, we first note that the nonsymmetric nominal stress tensors P* = T¢- FT and P = T - F' can
be derived from the elastic strain energy ¥° by the gradient operations

oy* oy°
o PR 28)

such that

PC
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P =F°.P. (29)
The fourth-order elastic pseudomoduli tensors are introduced by
R a4
A= ———— A =—— 30
OF° ® OF°’ UK BFgoFy (30)
o Ye o Ye
= — ikl — == - 31
OF @ OF’ R 0F e

It can be easily verified by partial differentiation that the rectangular components of the two pseudo-
moduli tensors are related through

A;‘kl = Fo AujniFy- (32)
The pseudomoduli tensors do not possess the symmetry in the leading or terminal pair of indices, but do

possess the reciprocal symmetry (A7, = A;;,; and A = Ay;;). The pseudomoduli tensor A® appears in the
linear relationship between the rates P¢ and F°, such that

L N N T (33)

This follows by differentiating the first of the expressions in Eq. (28). On the other hand, a differentiation
of Eq. (29) gives

P°=F".P+F".P. (34)
Substitution of Egs. (34) and (32) into Eq. (33) yields

P=A (F.F)—F'.F".P (35)

Furthermore, from the multiplicative decomposition (1), the rate of deformation gradient is

F=F F {F . fr (36)
Consequently, Eq. (35) can be rewritten as

P=A (F—F . F)—F'.F°.P, (37)
or,

P=A-[F—F .F —A"' (FF'.Fr.P). (38)

The elastic part of the rate of deformation gradient is defined by
(F)°=A"". P (39)

It is assumed that the elastic pseudomoduli tensor A has its inverse, the elastic pseudocompliances tensor
A~!, such that

A-A'=AT A= (40)

When the components of A and A~' are expressed in the same rectangular coordinate system,
L = 640, and Ay, Ayis = Ljjy. The remaining part of the rate of deformation gradient in Eq. (27),
(F)? = F — (F)%, is codirectional with the outward normal to a locally smooth yield surface in the stress P
space. This normality is further discussed in Section 4.

The relationships between the constituents of the multiplicative decomposition (1) and the additive
decomposition (27) follow from Eq. (38). They are
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(F)P =F - FP + A" (FP1 . FP . P), (41)

(B =F -FP — A" .(F' . F* . P). (42)

It is noted that under the superposed rotations of the current and intermediate configurations, the
nominal stress tensors P and P change according to P* =P - Q" and P** = Q - P¢- Q". However, neither
F, nor (F)° or (F)°, depends on the rotation of the intermediate configuration Q.

Eq. (38) also serves to identify the elastic and plastic parts of the rate of nominal stress. These are

(P)*=A-F, (43)

(P> = —[FP"' . FP. P+ A (F° - FP)], (44)
such that

P = (P) + (P). (45)

By comparing Eqs. (41) and (44), the plastic parts of the rate of nominal stress and deformation gradient
are related by

(B = A (), (B = AT (P (46)

3.1. Relationship between (P)’ and (T)"
To derive the relationship between plastic parts of the rate of nominal and symmetric Piola—Kirchhoff
stress,
PP=P—-A-F, (I)=T-2:E, (47)

we first recall the relationships between P and T, and A and %. Following Hill (1984) and Havner (1992),
these can be conveniently written as

A=A L - H+7, P=x"T:T+7.F (48)
The rectangular components of the fourth-order tensors 4" and .7 are
H i = 3(0uFi; + 0Fi), T it = Tix0j1- (49)

The relationship between (P)? and (T) is obtained by taking the trace product of the second equation in
Eq. (47) with 2T from the left. Upon using Eq. (48), this yields (Hill, 1984)

PP =T (T)P. (50)
Since

(P)" = —A-(Ff, (I =-2:(E), (51)
the plastic parts of the rates of the deformation gradient and the Lagrangian strain are related by

FP=A"- AT 2 (E)P. (52)
In addition, it is noted that

F-- (PP =E:(T)°, (53)

which follows by taking the trace product of Eq. (50) with F from the left, and by using
H - -F=F--AH"=E.
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4. Normality properties

The last expression is particularly helpful to discuss the plastic normality rules. This can be done by
using the framework of Hill and Rice (1973) and Hill (1978). If increments rather than rates are used, we
can rewrite Eq. (53) as

dF - -d°P = dE : d°T. (54)

An analogous expression holds when increments of F and E along an unloading elastic branch of the
response are used, i.e.,

OF - -d°P = OE : d°T. (55)

If this is positive, the material complies with the normality rule in the deformation space. Plastic in-
crement d”P is then codirectional with the inward normal to a locally smooth yield surface g(F, #) = 0 in
the deformation gradient space, such that

0g
d’P = —dy—=. 56
" oF (56)
The inelastic history-dependent parameters are collectively denoted by #, and dy is the loading index.
Since

d’P = —A - -d°F, d'T=-2:d"E, (57)
and

OP = A - -0F, 0T = & : 6E, (58)
the substitution into Eq. (55) yields a dual relationship

SP - -d°F = 8T : d°E. (59)

When this is negative, the material complies with the normality rule in the stress space. In that case, the
plastic increment dPF is codirectional with the outward normal to a locally smooth yield surface
f(P,#) =0 in the nominal stress space, i.e.,

of
d°F =dy_—. 60
"ap (60)
The yield surface normals in the deformation gradient and the nominal stress space are related by
g _of
oF-op M (€D

The loading index can be expressed as either of
1 1
o qp_Lo

The scalar parameters H and # are related by
_, 9% of
H_h_ﬁ"ﬁ' (63)

A sufficient condition for the normality is the compliance with the Ilyushin’s (1961) postulate of positive
network in an isothermal cycle of strain that involves plastic deformation, since then the quantity in Eq.
(54) must be negative (Hill and Rice, op. cit.), i.e.,

dF .- .d°P =dE: d’T < 0. (64)
On the other hand, Eq. (54) does not have a dual relationship, since
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dP - -d°F #dT : d’E. (65)
Instead, we can only write

dF--A.-.d°F=dE : & : d°E, (66)
or

dP..d°F +d°F--A - .d°F =dT : d’E + d°E : & : d°E. (67)

If material is in the hardening range relative to conjugate measures E and T, the stress increment dT,
producing plastic deformation dPE, is directed outside the yield surface in the stress T space, satisfying
dT : d°E > 0. If material is in the softening range, the stress increment producing plastic deformation is
directed inside the yield surface, satisfying the reversed inequality. As seen from Eq. (67), in each case the
sign of dP - -d°F is not determined by the sign of dT - -d’E alone.

5. Monocrystalline plasticity

Suppose that crystallographic slip is the only mechanism of plastic deformation in a single crystal, and
consider plastic deformation to occur by smooth shearing on the slip planes and in the slip directions. The
deformation gradient in this model can be decomposed as in Eq. (1), where FP is the part of F due to slip
only, while F° is the part due to lattice stretching and rotation. Denote the unit vector in the slip direction
and the unit normal to the corresponding slip plane in the undeformed configuration by sj and m§, where o
designates the slip system. The vector s} is embedded in the lattice, so that it becomes s* = F° - s} in the
deformed configuration. The normal to the slip plane in the deformed configuration is defined by the re-
ciprocal vector m* = mj - Fe!. In general, s* and m* are not unit vectors, but are orthogonal to each other.

The rate of plastic deformation gradient can be expressed in terms of the slip rates y* as

FP =5 (s; @ mj) - FP. (68)
a=1

The number of momentarily active slip systems is n. Upon substitution into Eq. (41), the plastic part of
the rate of deformation gradient becomes

n

(E)P = A", (69)
a=1
where
A=("®m) F+A"' - F' (s@m") -F-P. (70)

The plastic part of the rate of nominal stress is then

n

(PP =-> B, (71)
a=1
where
B '=A-A"=F"' (s"@m”)-F-P+A--(s*@m?)-F. (72)

The rate of work per unit volume is
P.-F=P. . (F-F +F.F), (73)

from which we identify the rate of slip work
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o =P (FFP). (74)
a=1

The generalized resolved shear stress on the slip system « is denoted by 7. Substituting Eq. (68) for F?
gives

n

v =Py F (s omy) - FP (75)

=1 =1
Thus, the generalized resolved shear stress can be expressed in terms of the nominal stress P as
=P [F-F' (ss@m})  F. (76)

The direction of the normal to the yield plane t* = 1% at P is determined from the gradient dz*/0P. This
is, from Eq. (76),

a o
a; =F-F . (stom) - FP+ A [P (stom?) - F°- P, (77)
or
ot” " o Al e ”
p=@m) F+A F' (som’) F-P (78)
The right-hand side is equal to A” in Eq. (70) and, therefore,
ot*
= A"
P (79)

In view of Eq. (69), this establishes the normality property for the plastic part of the rate of deformation
gradient,

. ", or*
F)F = — 7. 80
7 =35 (30)
Dually, by taking the gradient of Eq. (76) with respect to F, there follows
2;‘ =A[FF (s omg) P+ F (spomg) B P (81)

The right-hand side is equal to B* in Eq. (72). In view of Eq. (71), this leads to normality property for
plastic part of the rate of nominal stress

. ", ot*
(PP =—-> —7" (82)
2o

Eqgs. (80) and (82) are in agreement with Eqs. (6.19) and (6.20) of Havner (1992), since they can be
rewritten as

. 0 n . o n
P _ 0L 0t p_ _ - o
(=35 27 (PP =g D) (83)
with the understanding that partial differentiations are performed at fixed y*. This implies that > (t*j") acts

as the plastic potential for (F)" over an elastic domain in P space, while — 3 (t%)%) acts as the plastic
potential for (P)” over an elastic domain in F space.
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